martes, 15 de mayo de 2012

PROBABILIDAD DE MARKOV...!!!

ANDREY MARKOV BIOGRAFIA...!!!


(Riazán, 1856 - San Petersburgo, 1922) Matemático ruso que desarrolló la moderna teoría de procesos estocásticos. Trabajó en la casi totalidad de los campos de la matemática. En el campo de la la teoría de la probabilidad, profundizó en las consecuencias del teorema central del límite y en la ley de los grandes números. En su honor, lleva su nombre un tipo muy especial de procesos estocásticos.
Markov, graduado en la Universidad de San Petersburgo en 1878, fue alumno de Pafutny Chebyshev, quien ejerció una gran influencia en sus investigaciones. Impartió clases de matemáticas en esta Universidad desde 1886. Sus primeras investigaciones versaron sobre análisis y teoría de números, en particular sobre las fracciones continuas, límites de integrales, teoría de aproximaciones y convergencia de series. En 1900 estudió la teoría de probabilidades. Demostró a partir de supuestos muy generales el llamado teorema central del límite, que establece que la suma de un número grande de variables aleatorias independientes se aproxima a una distribución gaussiana.
Tras este trabajo, estudió las variables dependientes e introdujo el concepto de sucesos encadenados. Markov extendió los resultados clásicos de sucesos independientes a cierto tipo de sucesos encadenados, conocidos como sucesos markovianos, que son aquellos cuyo estado en un instante de tiempo depende de uno o varios estados cronológicamente anteriores. Este estudio, desarrollado por su discípulo Andrei Kolmogorov y por Norbert Wiener, se convirtió en una teoría general de procesos estocásticos y se ha aplicado con éxito en campos tan dispares como la biología, la sociología y la lingüística. Fue miembro de la Academia rusa de Ciencias desde 1896.

CADENAS DE MARKHOV.
Una cadena de Markov, que recibe su nombre del matemático ruso Andrei Markov, es una serie de eventos, en la cual la probabilidad de que ocurra un evento depende del evento inmediato anterior. En efecto, las cadenas de este tipo tienen memoria. “ Recuerdan” el último evento y esto condiciona las posibilidades de los eventos futuros. Esta dependencia del evento anterior distingue a las cadenas de Markov de las series de eventos independientes, como tirar una moneda al aire o un dado.
En los negocios, las cadenas de Markov se han utilizado para analizar los patrones de compra de los deudores morosos, para planear las necesidades de personal y para analizar el reemplazo de equipo.